

LEADERSHIP IN HIGH PRECISION BALLS & ROLLERS

N. GANDHI & CO.
An ISO 9001:2015 Certified Company

Having provided tailored solutions for Precision Balls for more than 3 decades, N. Gandhi & Co. is considered as a trusted source for industries like the Automobile, Aeronautic Sector, Cosmetic, Chemical and Mechanical domains. NGC balls are used in a multitude of ways: ball bearings, safety valves, body jewellery, steering column, safety belt applications, and so on.

The company has broadened its product base over the years to include Grinding media and Rollers along with metallic and non-metallic balls including ceramic, glass & plastic. The long standing commitment to excellence and dedication to our customers has earned us advanced expertise and a thorough understanding of hundreds of very specific applications and processes in industries which has helped us in providing customized solutions in all materials, sizes and tolerances.

All the balls we provide are produced in accordance with the standards required by the (DIN), (ABMA) and (ISO). Our quality assurance is also certified by the International Organization of Standardization, Standard 9001: 2015 by BSI.

The company's commitment to its customers and business integrity reflects in its widespread popularity - with a client base that's not only spread all across India but also in other parts of the world.

APPLICATIONS

Aerosol Pumps

Automotive Door Assembly

Ball Bearings

Ball Pen

Ball Screw

Ball Transfer Unit

Ball Valves

Bicycles

Bobbin Holder

Body Jewellery

Castor Wheels

Cosmetics

Gas Regulator

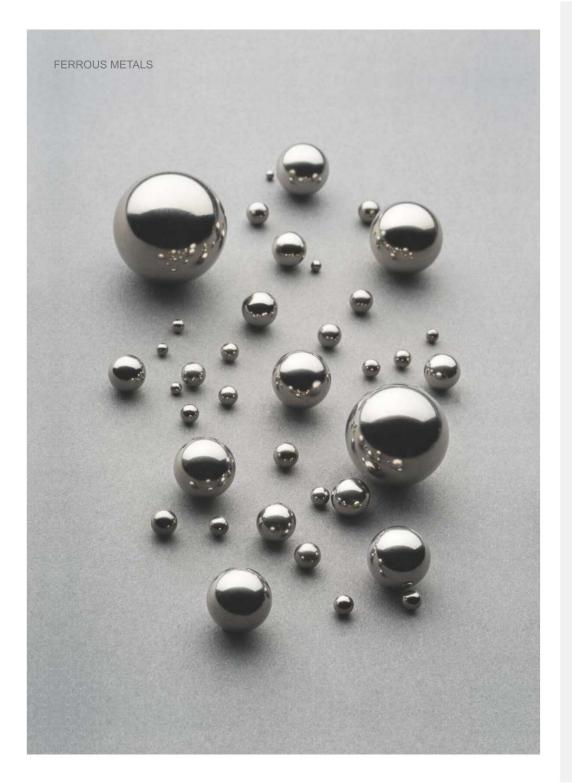
Household Appliances

Jewellery

Liner Motion Bearing

Rod End

Steering Column


Safety Belts

Toys

Watches

Wind Mill Bearing

PRECISION BALLS - FERROUS METALS

Low Carbon Steel (Case Hardened)

General Information

General Information
Balls of this type are generally used in applications where there are only moderate loads and slow rotating parts. for example Castors, Conveyors and Non-Precision Bearings. The main feature of this type of ball is the Carburised case with a soft core giving resistance to surface wear.

International Equivalents AISI 1010, JIS SWRM 12, EN32 ASTM A/29, Wks 1.0010

Composition

0.10 - 0.15% 0.30 - 0.60% 0.045% Max 0.045% Max 0.1 - 0.4% Max

Hardness

60 min

Mechanical Properties

53,000 psi 44,000 psi 0.284 lbs/cu.in Tensile Strength Yield Strength Density

Size Range - 1.588mm (1/16") to 12.700mm (1/2")

Standard Grades Available 100, 200, 500, 1000

High Carbon Steel (Through Hardened)

General Information

Balls of this material have the advantage of being through hardened to HRc 60 min and will take higher loads and provide longer life than case hardened carbon balls, for such applications as the Cycle Industry.

International Equivalents AISI 1065-86, EN8-9, C85 Wks 1.1269

Composition (AISI 1085)

C		0.85%
Si		0.35%
Mn		0.60%
P		0.0229
S		0.0229

Hardness

60 min

Mechanical Properties

106,400 psi 0.284 lbs/cu.in Density

Size Range - 3.175mm (1/8") to 38.1mm (1.1/2")

Standard Grades Available 100, 500, 1000

Minimum Case Depth					
Ball Dia	Case Depth	Ball Dia	Case Depth		
1.5mm - 2mm	0.4mm	9.5mm - 11mm	1.4 mm		
2.1mm - 3mm	0.5mm	11.1mm - 12.5mm	1.7 mm		
3.1mm - 4.5mm	0.6mm	12.6mm - 14mm	1.8 mm		
4.6mm - 5.5mm	0.8mm	14.1mm - 19mm	1.9 mm		
5.6mm - 6.5mm	0.9mm	19.1mm - 38mm	2.0 mm		
6.6mm - 9.5mm	1.1mm				

	Crushing Loads					
Ball Dia	Load	Ball Dia	Load			
1/8"	375 kgs	9/32"	2200 kgs			
5/32"	800 kgs	5/16"	2700 kgs			
3/16"	1100 kgs	11/32"	3200 kgs			
1/4"	1800 kgs	3/8"	3900 kgs			

PRECISION BALLS - FERROUS METALS

High Carbon Chrome Alloy

General Information

This is an oil hardened steel, which is universally used by the ball and roller bearing industry. The steel has high hardness and good resistance to deformation and excellent wear resistance. Usually vacuum degassed and uniformly through hardened in atmospherically controlled electric furnaces.

International Equivalents

AISI 52100, SUJ2 ASTM 100CR6, W 1.3505

Composition

	0.95 - 1.1%
Cr .	1.30 - 1.60%
4n	0.25 - 0.45%
i .	0.15 - 0.30%
)	0.025% Max
	0.025% Max

Hardness

c 60-67

Mechanical Properties

Tensile Strength
Yield Strength
Density

325,000 psi
295,000 psi
0.283 lbs/cu.in

Size Range - 0.635mm (0.025") to 101.60mm (4")

Standard Grades Available

5, 10, 25, 100, 500

Crushing Loads for Chrome Steel

Dian	neter	Minimum Crushing Load	Dia	meter	Minimum Crushing Load	Dia	meter	Minimum Crushing Load
Inch	mm		Inch	mm	Kg	Inch	mm	Kg
1/8	3.175	666	³¹ / ₆₄	12.303	7350	1	25.400	26600
2	3.500	792	1/2	12.700	7780	1 1/6	26.987	29600
5/32	3.968	990	17/32	13.494	8660	1 1/8	28.575	32800
2	4.000	1000	9/16	14.288	9590	1 3/16	30.162	36100
-	4.500	1240	(73)	15.000	10500	1 1/4	31.750	39500
3/16	4.762	1370	19/32	15.081	10600	1 5/16	33.337	43100
-	5.000	1490	5/8	15.875	11600	1 3/8	34.925	46800
7/32	5.556	1800	21/32	16.668	12600	1 7/16	36.512	50600
15/64	5.593	2020	11/16	17.462	13700	1 1/2	38.100	54600
-	6.000	2060	23/32	18.256	14800	1 5/8	41.275	62900
1/4	6.350	2280	3/4	19.050	16000	1 3/4	44.450	71700
17/64	6.746	2535	25/32	19.843	17200	1 7/8	47.625	81100
9/32	7.144	2810	-	20.000	17400	2	50.800	90900
5/16	7.938	3380	¹³ / ₁₆	20.637	18400	2 3/16	55.562	106500
11/32	8.731	4000	27/32	21.431	19700	2 1/4	57.150	112000
3/8	9.525	4670	7/8	22.225	21000	2 5/16	58.735	116500
-	10.000	5090	29/32	23.018	22300	21/2	63.500	135000
13/32	10.318	5380	¹⁵ / ₁₆	23.812	23700	23/4	69.850	159800
7/16	11.112	6140	31/32	24.606	25100	3	76.200	186500
15/32	11.906	6940	-	25.000	25900	4	101.600	309500

PRECISION BALLS - FERROUS METALS

Stainless Steel AISI 440C (Martensitic)

General Information

These balls give maximum hardness with good corrosion resistance to fresh water, steam, crude oil, gasoline, alcohol, food environment, blood and perspiration. In addition this material is ferro-magnetic and makes a fair permanent magnet. Balls are deep freeze stabilised after heat treatment.

International Equivalents

AISI 440C, DINX105 CR Mo17, SUS 440C, W 1.4125

Composition

C	0.95 - 1.20%
Cr	16 - 18%
Si	1.00% Max
Mn	1.0% Max
P	0.040% Max
S	0.030% Max
Mo	0.40 - 0.80% Ma

Hardness

58 - 63

Mechanical Properties

Tensile Strength 285,000 psi Yield Strength 275,000 psi Density 0.277 lbs/cu.ir

Size Range - 0.635mm (0.025") to 101.60mm (4")

Standard Grades Available

10, 25, 50, 1000

Stainless Steel AISI 420, 420C (Martensitic)

General Information

Balls of this material have a lower chrome content than 440C, and are used in applications where the more rigid corrosion resistance requirements can be relaxed. They have fair resistance to fresh water, steam, oil, gasoline, blood, perspiration, alcohol and food environment. However will not pass 40 hours salt spray test.

International Equivalents

AISI 420, SUS 420, X47Cr13, EN56D, W 1.3541

Composition	420	420C
C	0.15% Min	0.40 - 0.50%
Cr	12 - 14%	12.5 -14.5%
Si	1.0% Max	1.0% Max
Mn	1.0% Max	1.0% Max
P	0.04% Max	0.04% Max
S	0.03% Max	0.03% Max
Ni	-	1.0% Max

Hardness

Rc 48-53 53-58

Mechanical Properties

Tensile Strength 275,000 psi Specific Weight 0.280 lbs/cu.in

Size Range - 0.6mm (0.024") to 76.2mm (3")

Standard Grades Available

10, 16, 24, 48, 100, 200

Stainless Steel AISI 302,304,304L (Austenitic)

General Information

AISI 302 and 304 balls are for applications where material toughness and resistance to corrosion are more important than hardness. They have good corrosion resistance to the food environment, oxidising solutions and most organic chemicals. Applications are Valves, Aerosol and Finger Pumps. Corrosion resistance is higher after annealing and passivation. Not resistant to sulphuric acids.

International Equivalents

DIN X5 CR Ni 18.09, JIS SUS 304, W 1.4301

Composition	302	304	304L
C .	0.12% Max	0.08% Max	0.03% Max
Cr	17 - 19%	18 - 20%	18 - 20%
Ni	8 - 11%	8 - 10.5%	8 - 10.5%
Si	1.0% Max	1.0% Max	1.0% Max
Mo	1.0% Max	(=)	-
Mn	2.0% Max	2.0% Max	2.0% Max
P	0.045% Max	0.045% Max	0.045% Max
S	0.03% Max	0.03% Max	0.03% Max

Hardness Soft (Annealed)

Joit (Anneateu)

Mechanical Properties

Tensile Strength Yield Strength Density
100,000 to 180,000 psi 50,000 to 150,000 psi 0.286 lbs/cu.in

Size Range - 1.588mm (1/16") to 76.2mm (3")

Standard Grades Available

24, 48, 100, 200, 1000

Stainless Steel AISI 316, 316L (Austenitic)

General Information

Similar to AISI 302/304 but, with the addition of molybdenum improves corrosion resistance particularly to sulphuric acid compounds. These balls are used extensively in applications where contact is made with inks, photographic chemicals, bleaches, dyes and nitric acids. This is the only austenitic steel for ball manufacture and can be Magnetic and Non Magnetic.

International Equivalents

DIN X5 CR NI M0 17122, W 1.4401, JIS SUS 316

Composition	316	316L
C	0.08% Max	0.08% Max
Cr	16 - 18%	16 - 18%
Ni	10 - 14%	10 - 14%
Si	1.0% Max	1.0% Max
Mo	2 - 3%	2 - 3%
Mn	2.0% Max	2.0% Max
P	0.045% Max	0.045% Max
S	0.03% Max	0.03% Max

Hardness

Soft (Annealed)

Mechanical Properties

Tensile Strength Yield Strength Density
180,000 psi 150,000 psi 0.290 lbs/cu.in

Size Range - 1.588mm (1/16") to 76.2mm (3")

Standard Grades Available

24, 48, 100, 200, 1000

NON FERROUS METALS

PRECISION BALLS - NON FERROUS METALS

Tungsten Carbide Cobalt Binder

General Information

Tungsten Carbide materials have a unique combinations of properties, high compressive strength, hardness and resistance to wear, as well as an ability to withstand shock and impact. Typical applications are Valves, Flowmeters, Ball Screws and Linear Bearings. Balls from this material are also used for Ballizing, Gauging and Ball Pens.

Composition

Tungsten Carbide

Hardness

90.5 - 91.5

Mechanical Properties (Typical)

14.947 - 15.0% g/cm3 Density Thermal Conductivity Electrical Resistivity 100 W/m/oC 20 µW/cm

Size Range - 0.6 mm (0.024") to 50.8 mm (2")

Standard Grades Available

5, 10, 25, 100

Tungsten Carbide Nickel Binder

General Information

Conventional Tungsten Carbides (with Cobalt binder) has limited corrosion resistance, which makes them unsuitable for applications in which the wear parts are operating under both severe abrasive and corrosive conditions. As a general rule straight Tungsten Carbide (with Cobalt Binder) is resistant to corrosion down to pH 7. By comparison, tests have shown that our Tungsten Carbide (with Nickel binder) material is resistant to corrosion down to pH 2 or 3.

Composition (IS) -K16C)

Tungsten Carbide Nickel Base Binder

Hardness

88 - 89

Size Range - 0.635 mm (0.025") to 50.8 mm (2")

Standard Grades Available

10, 25, 100

Titanium Alloys

General Information

Titanium balls provide low weight, good mechanical features, thermal properties and corrosion resistance. They are used even in aesthetic applications. Grade 1 and Grade 2 belongs to the Commercially pure Titanium Alloys family.

Applications

Titanium balls are used in Aviation, Aerospace, Military, Chemical, Petrochemical Industry, in the Medical Field, Jewelry, Calibration of Measurement Instruments, Piercing purposes.

Chemical Composition

0.080% Max 0.030% Max balance 0.20% Max 0.18% Max 0.015% Max

Hardness HRc

28-42

Size Range 1mm - 12mm

Standard Grades Available

100, 200

Hastelloy C276 Alloy Balls

Ni based alloy balls, they show very good crevice, pitting and stress corrosion resistance, both on oxidating and reducing environments. Good wear resistance. Balls are provide in the passivated condition.

Applications

Special pumps and valves, they are applied in the Foodstuff, Paper, Chemical, Pharmaceutical, Naval, Petrol, Textile industry. Devices for Waste Treatment, Pollution Check, Flue Gas Desulfurization, Turbines.

Chemical Composition Cr 14.5-16.5% W 3-4.5% 15-17% 4-7% 2.5% max. Balance

Hardness

32-48

3/64" - 4" max Size Range

Standard Grades Available

PRECISION BALLS - NON FERROUS METALS

Inconel 825 Alloy Balls

General Information

Austentic NiCrFe alloy balls, they provide excellent corrosion resistance in aggressive environments, both general and localized

Applications

Special Valves for the Chemical Industry.

Chemical Composition

Hardness

HRc 25-30

Mechanical Properties

Tensile Strength 850-950 Mpa 8.14 g/cm3

Size Range 3/64" - 4" max

Standard Grades Available

100, 200, 500, 1000

Inconel 625 Alloy Balls

General Information

Ni based alloy with high corrosion resistance properties, even in very aggressive environments. Balls are provide in the passivated condition.

Applications

Sea Water Applications, Compressors, Heat Exchangers, Turbines, Special Pumps and Valves. They are used in Aerospace, Chemical, Naval, Military, Nuclear, Oil and Gas Industry, High Temperature Applications.

Chemical Composition

C 0.100% Max Si 0.50% Max Mn 0.50% Max P 0.015% Max S 0.015% Max Cr 20.00 - 23.00 Ni 58.00% min Cu 0.50 Max Mo 8.00-10.00% Nb 3.15-4.15% Co 1.00% Max Al 0.40% Max Ti 0.40% Max Fe 5.00% Max

Hardness

c 30-35

Mechanical Properties

Tensile Strength 1000-1100 Mpa Density 8.42 g/cm3

Size Range 3/64" - 4" max

Standard Grades Available

100, 200, 500, 1000

Monel K 400 Alloy Balls

General Information

Ni-Cu based alloys with good mechanical characteristics and excellent corrosion resistance. Balls are provided in the passivated condition.

Applications

Special Pumps and Valves, Flue Gas Desulfurization, Heat Exchangers. They are used in the Paper, Chemical, Pharmaceutical, Naval, Petrol and Textile Industry.

Chemical Composition

C 0.30% Max Si 0.50 Max Mn 2.00% Max S 0.024% Max Ni 63.00 - 70.00 % Cu 28.00 - 34.00 % Co 1.00% Max Fe 2.50 % Max

Hardness

lc 17-22

Mechanical Properties Tensile Strength 670-770 Mpa

Density 8.82 g/cm3

Size Range 3/64" - 4" max

Standard Grades Available

25, 100, 200

Monel K 500 Alloy Balls

General Information

Ni-Cu precipitation hardening ally, it presents higher hardness and load resistance with respect to Monel 400 alloy but same corrosion resistance. Balls are provide in the passivated state.

Applications

Special Pumps and Valves, they are used in Paper, Chemical, Electronic, Pharmaceutical, Naval, Oil and Gas Industry, Textile industry.

Chemical Composition

C 0.25% Max Si 0.50% Max Mn 1.50% Max S 0.010% Max Ni 63.00-70.00% Max Cu 27.00-33.00% Max Ti 0.35-0.85% Al 2.30-3.15% Fe 2.00% Max

Hardness

75-90

Mechanical Properties

Tensile Strength 920-1020 Mpa Density 920-1020 mpa 8.42 g/cm3

Size Range 3/64" - 4" max

Standard Grades Available

PRECISION BALLS - NON FERROUS METALS

Copper Balls

General Information

Nearly pure copper balls, they show good mechanical and corrosion resistance properties, excellent thermal and electric conductivity.

Small amounts of alloying elements as Cr, Zr, Ag, Cd, Mg, Sn allow to improve the mechanical properties.

Applications

Copper balls are used in Galvanic Applications and in the field of Electronic Industry.

3/64" - 1.5/8" max

Chemical Composition

Cu 99.900 % min Other 0.010 max

Hardness

Size Range

40-120

Mechanical Properties

Tensile Strength 220-320 Mpa Density 8.91 g/cm3

Standard Grades Available

100, 200, 500, 1000

Brass Balls

General Information

Brass balls show fairish mechanical performance, good corrosion resistance, excellent electrical properties. They generate low frictions.

Applications

Special Valves, Industrial Pumps and Valves, Electronic Devices, Safety Switches, Heating Units, Appliances, Furniture Rails

They are used in the Automotive, Electronic and Petrochemical Industry.

Chemical Composition

Cu 68.50-71.50% (C26000) 63.00-68.50% (C27000) 59.00-63.00% (C28000) 70 balance (C26000) balance (C27000) balance (C28000) Pb 0.070 Max (C26000) 0.090 Max (C27000) 0.090 Max (C28000) 0.090 Max (C28000) Fe 0.050 Max (C26000)

Hardness

75-87

0.070 Max (C27000)

0.070 Max (C28000)

Mechanical Properties

Tensile Strength 500-600 Mpa Density 8.49 g/cm3

Alloy 20 Balls

General Information

Alloy 20, is a nickel-iron-chromium austenitic alloy that was developed for maximum resistance to acid attack, specifically sulfuric acid. This super alloy has excellent resistance to general corrosion, pitting, and crevice corrosion in chemicals containing chlorides and sulfuric, phosphoric, and nitric acids. It also contains niobium for stabilization against sensitization and resultant inter granular corrosion.

Application

Special Bearings, Pumps and Valves, in all applications where high wear, corrosion and temperature resistance are demanded.

Chemical Composition Ni 32.00-38.00%

Nt 32.00-38.00% Fe Balance Cr 19.0-21.0% Cu 3.0-4.0% Mo 2.0-3.0% Nb 8xC-1.0% max Mn 2.0% max P .045% max S .035% max S .035% max

Mechanical Properties

Tensile Min. 80 ksi Yield Min. (.2% offset) 35 ksi Elongation Min. 30% Reduction of Area Min. 50%

Size Range 3/64" - 4" max

Standard Grades Available

28, 40, 100, 200

Dimensional Conversion Chart

Inch Fractions	Inch Decimals	Metric mm	Weight per 1000 balls kg	Inch Fractions	Inch Decimals	Metric mm	Weight per 1000 balls kg
1/64	.0156	0.397	.00026	-	.7480	19.000	27.98
2	.0197	0.500	.00051	3/4	.7500	19.050	28.20
1/32	.0312	0.794	.00210	25/32	.7812	19.844	31.87
-	.0394	1.000	.00407	-	.7874	20.000	32.63
3/64	.0469	1.190	.00688	13/16	.8125	20.637	35.85
-	.0472	1.200	.00704	-	.8268	21.000	37.77
	.0590	1.500	.01377	27/32	.8437	21.431	40.15
1/16	.0625	1.588	.01632		.8661	22.000	43.43
5/64	.0781	1.984	.03187	7/8	.8750	22.225	44.78
2,/22	.0787	2.000	.0326	20/22	.9055	23.000	49.63
3/32	.0937	2.381 2.500	.0550	29/32	.9062 .9375	23.019 23.812	49.75 55.07
7/64	.1094	2.500	.0875	15/16	.9375	24.000	56.39
7/04	.1181	3.000	.1101	31/32	.9687	24.606	60.77
1/8	.1250	3.175	.1305	31/32	.9842	25.000	63.73
1/0	.1378	3.500	.1749	1	1.0000	25.400	66.84
9/64	.1406	3.572	.1859	-	1.0236	26.000	71.69
5/32	.1562	3.969	.2550	1 1/16	1.0625	26.987	80.17
-	.1575	4.000	.2610	-	1.1024	28.000	89.54
11/64	.1719	4.366	.3394	1 1/8	1.1250	28.575	95.17
-	.1772	4.500	.3716		1.1811	30.000	110.10
3/16	.1875	4.762	.4406	1 3/16	1.1875	30.162	111.90
-	.1968	5.000	.5099	1 1/4	1.2500	31.750	130.50
-	.2165	5.500	.6786	-	1.2598	32.000	133.70
7/32	.2187	5.556	.6996	1 5/16	1.3125	33.337	151.10
15/64	.2344	5.953	.8605	-	1.3386	34.000	160.30
_	.2362	6.000	.8810	1 3/8	1.3750	34.925	173.80
1/4	.2500	6.350	1.044	-	1.3780	35.000	174.90
-	.2559	6.500	1.120	-	1.4173	36.000	190.30
17/64	.2656	6.747	1.253	1 7/16	1.4375	36.512	198.50
-	.2756	7.000	1.399	-	1.4960	38.000	223.80
9/32	.2812	7.144	1.487	1 1/2	1.5000	38.100	225.60
10/64	.2953	7.500	1.721	1 9/16	1.5625	39.687	255.00
19/64	.2969	7.541	1.749 2.040	1	1.5748	40.000	261.00
5/16	.3125 .3150	7.938 8.000	2.040	1 5/8 1 11/16	1.6250	41.275 42.862	286.00 321.20
-	.3346	8.500	2.505	1 11/16	1.6875 1.7500	44.450	358.20
11/32	.3437	8.731	2.715	1 3/4	1.7716	45.000	371.70
11/32	.3543	9.000	2.973	1 13/16	1.8125	46.037	398,00
23/64	.3594	9.128	3.102	1 7/8	1.8750	47.625	440.60
-	.3740	9.500	3.497	1 15/16	1.9375	49.212	486.10
3/8	.3750	9.525	3.525		1.9685	50.000	509.90
25/64	.3906	9.922	3.983	2	2.0000	50.800	534.70
2	.3937	10.000	4.079	2 1/8	2.1250	53.975	641.40
13/32	.4062	10.319	4.481	-	2.1653	55.000	678.60
2	.4331	11.000	5.429	2 1/4	2.2500	57.150	761.30
7/16	.4375	11.112	5.597	-	2.3622	60.000	881.00
-	.4528	11.500	6.203	2 3/8	2.3750	60.325	895.40
29/64	.4531	11.509	6.219	2 1/2	2.5000	63.500	1044.40
15/32	.4687	11.906	6.884	-	2.5590	65.000	1120.10
-	.4724	12.000	7.048	2 5/8	2.6250	66.675	1209.00
31/64	.4844	12.303	7.596	2 3/4	2.7500	69.850	1390.10
1/2	.5000	12.700	8.355	-	2.7559	70.000	1484.70
17/22	.5118	13.000	8.961	2 7/8	2.8750	73.025	1588.40
17/32	.5312	13.494	10.02	3	2.9528	75.000	1720.70
0/16	.5512 .5625	14.000 14.288	11.19 11.90		3.0000 3.1250	76.200 79.375	1804.70 2039.80
9/16	.5905	14.288	13.77	3 1/8	3.1500	80.000	2039.80
19/32	.5937	15.000	13.77	3 1/4	3.2500	82.550	2088.30
5/8	.6250	15.081	16.32	3 74	3.3464	85.000	2530.90
-	.6299	16.000	16.70	3 1/2	3.5000	88.900	2865.70
21/32	.6562	16.669	18.89	3 72	3.5433	90.000	2993.40
	.6693	17.000	20.04	-	3.7401	95.000	3521.10
11/16	.6875	17.462	21.72	3 3/4	3.7500	95.250	3524.70
	.7087	18.000	23.79	-	3.9370	100.000	4078.80
23/32	.7187	18.256	24.82	4	4.0000	101.600	4277.70

The weight shown are based on chrome alloy steel balls, approximate weight for other materials can be obtained by multiplying the weight per 1000 balls by the following figures:

Carbon Steel	1.004	Stainless Steel AISI 302/304	1.011	Brass	1.074
Stainless Steel AISI 420/420	0.979	Stainless Steel AISI 316	1.025	Tungsten Carbide	1.907

Technical Data

Tolerances by Grade for Individual Balls

	Ball Grade	Allowable Ball Diameter Variation	Allowable Deviation From Spherical Form	Maximum Surface Roughness Arithmetic Average
	Grade			
	3	.000003	.000003	0.5
	5	.000005	.000005	0.8
	10	.000010	.000010	1
	16	.000016	.000016	1
Inch	24	.000024	.000024	2
=	48	.000048	.000048	3
	100	.0001	.0001	5
	200	.0002	.0002	8
	500	.0005	.0005	*
	1000	.001	.001	*
	3	0.08	0.08	0.012
	5	0.13	0.13	0.02
	10	0.25	0.25	0.025
_	16	0.4	0.4	0.025
<u> </u>	24	0.6	0.6	0.05
Metric µm	48	1.2	1.2	0.08
Σ	100	2.5	2.5	0.125
	200	5	5	0.2
	500	13	13	*
	1000	25	25	*

Definitions

Nominal Ball Diameter. The diameter value that is used for the purpose of general identification of a ball size; e.g., 1/4", 6mm, etc.

Single Diameter of a Ball. The distance between two parallel planes tangent to the surface of the ball.

Mean Diameter of a Ball. The arithmetic mean of the largest and the smallest actual single diameters of the ball.

Ball Diameter Variation. The difference between the largest and the smallest actual single diameters of one ball.

Deviation from Spherical Form. The greatest radial distance in any radial plane between a sphere circumscribed around the ball surface and any point on the ball surface.

Lot. A definite quantity of balls manufactured under conditions which are presumed uniform and which is considered and identified as an entity.

Lot Mean Diameter. The arithmetic mean of the mean diameter of the largest ball and that of the smallest ball in the lot.

Lot Diameter Variation. The difference between the mean diameter of the largest ball and that of the smallest ball in the lot.

Nominal Ball Diameter Tolerance. The maximum allowable deviation of any ball lot mean diameter from the nominal Ball Diameter.

Specific Diameter. The amount by which the lot mean diameter differs from the nominal diameter, accurate to the marking increment for that grade.

Ball Grade. A specific combination of dimensional form and surface roughness tolerances. A ball grade is designated by a grade number.

Ball Gauge. The prescribed small amount by which the lot mean diameter should differ from nominal diameter, this amount being one of an established series of amounts.

Ball Gauge Deviation. The difference between the lot mean diameter and the sum of the nominal diameter and the ball gauge.

Surface Roughness. Surface roughness consists of all those irregularities which form surface relief and which are conventionally defined within the area where deviations of form and waviness are eliminated.

Waviness. The more widely spaced circumferential component of surface texture.

Hardness. The measure of resistance to penetration of the ball surface or truncated flat of the ball by a specific indenting shape as determined by specified methods.

Case Depth. The distance measured radially from the surface of the ball to a point where the hardness becomes the equivalent of Rc 50. This term is applicable to case hardened balls only.

Passivation. A chemical treatment to remove corrodible surface impurities and to provide a protective film. This term is applicable to corrosion resisting balls only.

Ceramic Balls

Ceramic balls are particularly suited to harsh environments. Their main advantages over steel is that they have a density of 40% tower than steel. Have 29% lower thermal expansion and are 150% harder. In certain high-speed applications their life is extended by as much as a hundred times. The three main materials used are Alumina Oxide, Zircona Oxide and Silicon Nitride. The following chart shows comparisons between the three.

Si, N, SILICON NITRIDE:

The most widely used type of ceramic due to very high resistance to wear and abrasion in general. It has a micro - structure specially designed for applications subject to great stress. It does not require lubrication, it is resistant to corrosion, anti magnetic and electrically insulating, and it continues to be efficient at high temperatures up to +1400 oC. It combines extreme hardness with a high precision ball. Si3N4 balls are widely used in high precision bearings in the airspace industry, for machine tools, measurement instruments, mechanical centrifuges, radar and missiles, pumps and compressors.

Al₂O₃ 99.50% ALUMINA (ALUMINA OXIDE):

The material has a multi-crystal structure and excellent resistance to abrasion and high temperatures. It is resistant to most corrosive agents, but it is not recommended for use in contact with hydrochloric and hydrofluoric acid or strong alcaline solutions. Al_2O_3 balls are used in valves, pumps and ball bearings.

ZrO₂ ZIRCONIUM OXIDE:

The material, compared has a high degree of compactness and considerable flexural strength, which makes it very reliable. It also has a low modulus of elasticity, close to that of steel, together with an extraordinarily low thermal conductivity.

Al,O, 99.99% RUBY:

This material has a non porous single crystal structure used where particular hardness and extreme resistance to wear are required together with a low specific weight and properties of chemical inertia. The material consists of pure aluminium oxide with a small percentage of chromo oxide which gives it its characteristic red colour, which is the most visible feature of these balls in many applications as measurement and control instruments, valves and pumps.

AL,O, 99.99% SAPPHIRE:

This material has a single crystal structure and unlike ruby is transparent. Because of its optical properties and high refraction index. Balls made of this material are currently used as chemically inert lenses.

CERAMIC BALLS - PROPERTIES OF MATERIALS

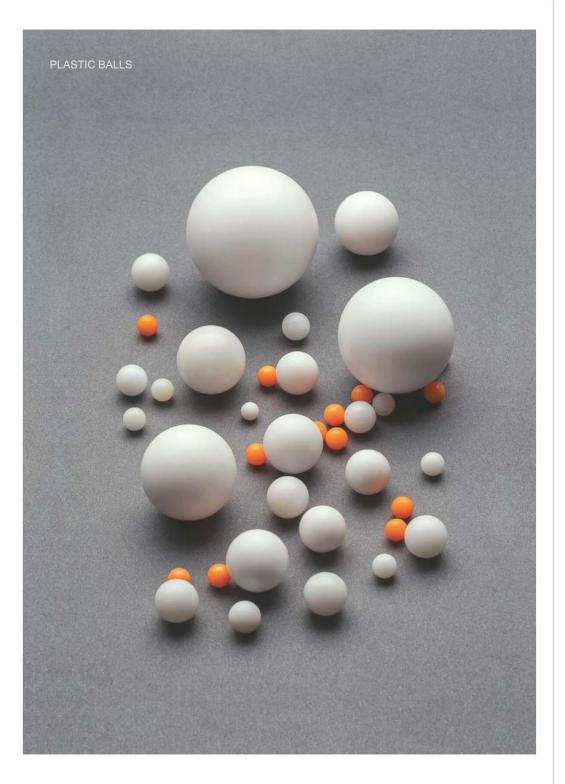
PHYSICAL PROPERTIES	SAPPHIRE AND RUBY	ALUMINA OXIDE	SILICON NITRIDE	ZIRCONIUM OXIDE
STRUCTURE	single crystal	multi-crystal	multi-crystal	multi-crystal
CHEMICAL FORMULA	Àl ₂ Î ₃	Àl _z Î ₃	Si ₃ N ₄	ZrO ₂
PURITY %	99.99	99.8	95.00	97.00
DENSITY g/cm ₃	3.99	3.90	3.20	5.50
OPERATING TEMPERATURE °C		1800	1100	1000
MELTING POINT	2050 °C	2050 °C	1900 °Ñ	
SOFTENING POINT	1800 °C	1725 °Ñ	1400 °Ñ	
SPECIFIC HEAT AT 25 °C (CAL/g/°C) THERMAL CONDUCTIVITY	0.18 36 W/m°k	0.25 29 W/m°k	0.17 29 W/m°k	9 W/m°k
MECHANICAL PROPERTIES	SAPPHIRE AND RUBY	ALUMINA OXIDE	SILICON NITRIDE	ZIRCONIUM OXIDE
VICKERS Hv10 HARDNESS (N/mm2)	17000	16500	24000	20000
MODULUS OF ELASTICITY (N/mm2)	4,3õ10 ⁵	3,5õ10 ⁵	3,1õ10 ⁵	2õ10 ⁵
BREAKING MODULUS AT 25 °C (N/mm2)	392	470	700	600
COMPRESSIVE STRENGTH AT 25 °C (N/mm2)	2060	2354	2500	2100

CHEMICAL RESISTANCE

SAPPHIRE / RUBY:

inert to most acids at very high temperatures.

ALUMINA (OXIDE):


inert to most acids, but not recommended in environments with hydrochloric or hydrofluoric acids or strong alkaline solutions

SILICON NITRIDE:

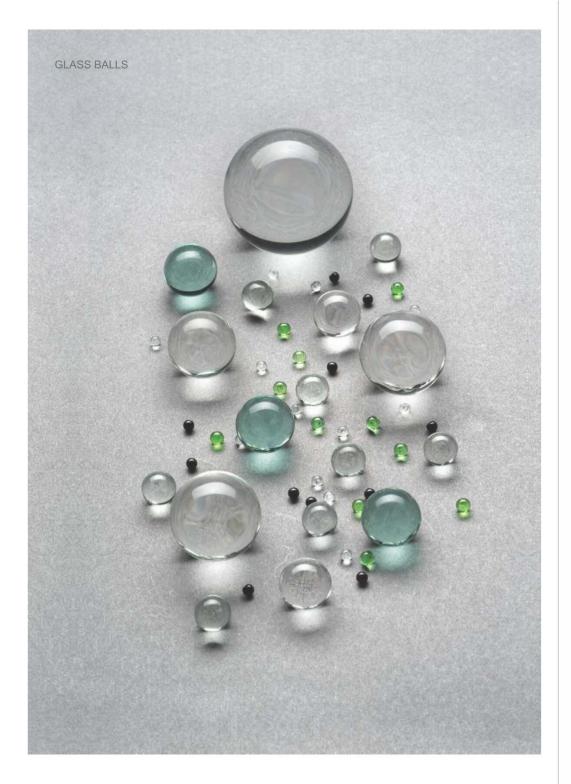
inert to most acids.

ZIRCONIUM OXIDE:

inert except to hydrofluoric acid and strong concentrations of sulphuric acid.

Plastic Balls

Plastic balls are manufactured from standard and specially polymer resins in size from 3/32" - (2.381 mm) to 5" - (127 mm). Balls above 1" - (25.4 mm) are manufactured from extruded rod.


Plastic balls are a cost-effective substitute for metallic balls in low load bearings. They are also used as agitators in aerosol spray cans, lightweight check valves, medical diagnostics and a wide variety of other applications.

Tolerances to +/-0.0005" (+-0.0125 mm) are possible for certain materials such as nylon and acetal. Surfaces can be tailored from rough to highly polished finishes.

PROPERTIES	ACETAL	POLYAMIDE	POLYETHYLENE LOW DENSITY	POLYETHYLENE HIGH DENSITY	PTFE FLUROCARSON
PHYSICAL					
SPECIFIC GRAVITY	1.42	1.13-1.15	0.910-0.925	0.941-0.965	2.14-2.20
WATER ABSORPTION 24HR (1/8 IN: THICK SPECIMEN)% SATURATION	0.25-0.40 500 (90ML)	1.0-1.3 8.5	<0.01	<0.01	<0.01
DIELECTRIC STRENGTH (1/8 IN: THICK SPECIMEN) SHORT TIME V./MIL	500 (90ML)	600 ^B	450-1000	450-500	480
MECHANICAL					
TENSILE STRENGTH AT BREAK, PSI		12.000 ⁸ 11.000 ^C	600-2300	3100-5500	2000-5000
ELONGATION AT BREAK,%	25-75	60 ⁸ , 300 ^c	90-800	20-130	200-400
TENSILE YIELD STRENGTH,PSI	95000-12.000	8000 ^B , 6500 ^C	800-1200	3000-4000	
COMPRESSIVE STRENGTH (RUPTURE OR YIELD) PSI	18.000@10%	15.000 ⁸ (YLD.)		2700-3600	1700
FLEXURAL STRENGTH (RUPTURE OR YIELD) PSI	14.000	17.000 ^B , 6100 ^C			
TENSILE MODULUS 10 ³ PSI	520		14-38	60-180	58-80
COPRESSIVE MODULUS 10 ³ PSI	670				60
73°F FLEXURAL MODULUS 10³ PSI 200°F 250°F 300°F	380-430	420 ⁸ , 185°	8-60	100-260	80
IZOD IMPACT. FT-LB/.I.OF NOTCH (1/8-IN.THICK SPECIMEN)	1.3-2.3	0.8-1.0 ⁸ , 2.1 ^c	NO BREAK	0.5-20	3
HARDNESS ROCKWELL SHORE	M94	R120 ⁸ M83 ⁸	D40-51	D60-70	D-50-55
THERMAL					
COEF. OF LINER THERMAL EXPANSION 10°IN./IN°C	100	80	100-2220	110-130	
DEFLECTION TEMPERATURE 264PSI FLEXURAL LOAD. °F	255	167 ⁸	90-105	110-130	
66PSI	338	474 ⁸	100-121	140-190	250
THERMAL CONDUCTIVITY 10-CALCM/SEC-CM ² -°C	5.5	5.8	8	11-12	6.0

	SPHE	RICITY	TOLERANCE			
GRADE	INCHES	MM	INCHES	MM	SURFACE	
0*	0.0005	0.0125	±0.0005	0.0125	POLISHED	
1	0.0005	0.0125	±0.001	0.025	POLISHED	
II.	0.001	0.025	±0.002	0.050	UNPOLISHED	
Ш	0.005	0.125	±0.005	0.125	UNPOLISHED	

^{*}Only available in certain materials

Glass Balls

Glass Balls are dimensionally stable, resist corrosion and chemical absorption and can withstand high temperatures (up to 600° F.) Density varies depending on the type of glass used to manufacture the ball. We provide high precision balls from the following types of glass:

SODA-LIME GLASS

Material resistant to high alkaline solutions. Soda-lime glass balls are mainly used for applications not subjected to strong mechanical or thermal shocks, such as plastic bearings, flow meters, measurement and control equipment, instruments and ink cartridges.

BOROSILICATE GLASS

Due to its excellent chemical inertia to most acids, this kind of glass is particularly suitable for metering pumps and valves against strong oxidising concentrations.

BLACK GLASS

A kind of glass often used for medical and chemical flow meters and for general measurement and control instruments.

CHEMICAL COMPOSITION %						
MATERIAL	SiO ₂	NA ₂ O	CaO	Al ₂ O ₃	A_2O_3	MgO
Soda-Lime Glass	67	16	7	5	3	2
Borosilicate Glass	81	4	-	2	13	-
Black Glass	69.7	15.2	3.4	-	1.3	-

PROPERTIES	SODA-LIME GLASS	BOROSILICATE GLASS	BLACK GLASS
Specific Weight	2.50	2.23	2.55
Hardness (KNOOP-KHN)	465	418	405
Melting Point °C	695	820	650

MAX TEMPARATURE USE (mechanical)							
Normal °C	110	230	110				
Extreme °C	460	490	380				
Resistance to Thermal Stress	17° C	53° C	18° C				

Burnishing Media

Burnishing Media can be balls or peculiar shapes which are used for polishing the rough surfaces of many different metal components. The different shapes are designed to get into the varying crevices and contours of diverse metal products.

CASE HARDENED CARBON STEEL		AISI 1010 / 1018	HARDNESS HRC 60
THROUGH HARDNESS CA	THROUGH HARDNESS CARBON STEEL		HARDNESS HRC 80
CHROME STEEL	CHROME STEEL		HARDNESS HRC 60-66
STAINLESS STEEL	STAINLESS STEEL		HARDNESS HRC 48-55
STAINLESS STEEL	MAGNETIC	AISI 304 / 316	HARDNESS HRC 25-39
NON MAGNETIC		AISI 304 / 316	HARDNESS - NA
ZIRCONIA CERAMIC		ZrO2	HARDNESS 1100 HV

Shapes

TYPE		SIZE RANGE	MATERIAL
BALLS		1/16"- 4"	ALL
BALL CONES		1/8" - 3/8"	AISI 1010 / 1018 AISI 1070 AISI 420 AISI 304 / 316
BARRELS		1/8" - 3/8"	AISI 1070 AISI 420 AISI 304 / 316
OVALS		1/8" - 5/16"	AISI 1010 / 1018 AISI 420 AISI 304 / 316
DIAGONALS	0	1/8" - 3/8"	AISI 1010 / 1018 AISI 420 AISI 304 / 316
PINS		1.5 mm x 10 mm	EN 31 AISI 420 AISI 304 / 316
FLAT PINS		1.2mm x 2.5mm x 10mm	EN 31 AISI 420 AISI 304 / 316

CERAMIC BALLS - GRINDING MEDIA

Zirconia Toughened Alumina

Description:

Zirconia Toughened Alumina bead was sintered from alumina powder and zirconium silicate powder. Compared to the alumina beads, it is an economic ceramic bead to replace kaolin bead, silica sand and other natural grinding media.

Chemical Composition:

Composition Al₂O₃ ZrO₂ SiO₂ Wt% 65-75 6-12 6-8

Physical Properties:

 Specific Gravity
 Bulk Density
 Micro hardness

 3.1-3.2kg/dm3
 2.0-2.2kg/L
 900kg/mm2

 Compressive Strength
 Wear Rate
 Color

 80kgf(2mm)
 <70g/T</td>
 Shell

Zirconium Silicate Beads

Description:

Zirconium silicate beads are made from the high grade Australian zircon sand with granulating shaped method and hardened by sintering. The unique formula and producing procedure offer you a middle density and hardness, high wear resistance middle hard particles in the low to middle viscosity range slurries.

Chemical Composition:

Composition Al₂O₃ SiO₂ ZrO₂ Wt% 60-64 30-33 7-9

Physical Properties:

Microcrystal Alumina Beads

Description:

Microcrystal alumina bead is made from high purity alumina powder and silica powder with sintering method. The micro size of polycrystals contributes to wear resistance and idea strength. It is a wise choice to replace the carbon steel beads to grind the metallic and non-metallic mineral.

Chemical Composition:

Composition Al₂O₃ SiO₂ Others Wt% 91-93 6 1-2

Physical Properties:

Specific Gravity Bulk Density Micro hardness 3.5-3.7kg/dm3 2.2-2.3kg/L 1350kg/mm2 Color 120kgf(2mm) Wear Rate Color 420kg/T White

Alumina Toughened Zirconia

Description:

Alumina Toughened Zirconia bead was granulated from the ultra fine zirconium dioxide and alumina powder. The consistent micro poly-crystal benefits high compressive strength and wear resistance of beads. Although there is a lower density than T-T2P (yttria-Tetragonal Zirconia polycristal), the lower unit cost is an obvious plus. It can replace it in more application and is competent the mills with high tip speed up to 14m/s.

Chemical Composition:

Composition Al₂O₃ ZrO₂ SiO₂ Wt% 65-75 6-12 6-8

Physical Properties:

 Specific Gravity
 Bulk Density
 Micro hardness

 3.1-3.2kg/dm3
 2.0-2.2kg/L
 900kg/mm2

 Compressive Strength
 Wear Rate
 Color

 80kgf(2mm)
 <70g/T</td>
 Shell

	Chemical	Chemical Composition		
Soda Lime Glass Balls	SiO2 Na2O CaO MgO AI2O3 others	72.50 % 13.00 % 9.06 % 4.22 % 0.58 %		
Aluminium Borosilicate Ballls	SiO2 CaO AI2O3 B2O3 MgO others	53.50 % 20.10% 14.80 % 8.11 % 2.33 %		
Soda Lime	SiO2 Na2O CaO AI2O3 B2O3 others	66.70 % 14.00 % 7.59 % 3.46 % 2.90 %		

Figures are reference values.

Available Standard Sizes

Size Range (mm)	Bulk Density (kg/l)	Pieces/1000 gr	Size Range (mm)	Bulk Density (kg/l)	Pieces/1000 gr
0.25-0.50	1.46	14486600	1.70-2.10	1.52	111370
0.40-0.60	1.47	6111500	2.00-2.40	1.53	71740
0.50-0.75	1.49	3129100	2.40-2.90	1.53	41050
0.75-1.00	1.50	1140300	2.85-3.45	1.53	24440
1.00-1.30	1.51	502300	3.40-4.00	1.53	15080
1.25-1.65	1.51	250580	3.80-4.40	1.53	11080
1.55-1.85	1.52	155490			

0-400µm microbeads available in different tolerances

Available Standard Sizes

Size Range (mm)	Bulk Density (kg/I)	Pieces/1000 gr	Size Range (mm)	Bulk Density (kg/l)	Pieces/1000 gr
0.50-0.75	1.55	3020370	2.00-2.50	1.53	64730
0.75-1.00	1.54	1100710	2.50-3.00	1.53	35450
1.00-1.40	1.53	426730	2.80-3.40	1.52	24750
1.30-1.70	1.53	218480	3.30-3.90	1.51	15800
1.70-2.10	1.53	107500	3.90-4.40	1.50	10310

Available Standard Sizes

Size Range (mm)	Bulk Density (kg/l)	Pieces/1000 gr	Size Range (mm)	Bulk Density (kg/I)	Pieces/1000 gr
1.5 mm+/-0.2 mm	1.50	226350	4.5 mm+/-0.3 mm	1.50	8380
2.0 mm+/-0.2 mm	1.50	95490	5.0 mm+/-0.3 mm	1.50	6110
2.5 mm+/-0.2 mm	1.50	48890	6.0 mm+/-0.3 mm	1.48	2220
3.0 mm+/-0.3 mm	1.50	28290	7.0 mm+/-0.3 mm	1.48	1490
3.5 mm+/-0.3 mm	1.50	17810	8.0 mm+/-0.4 mm	1.48	1040
4.0 mm+/-0.3 mm	1.50	11930	9.0 mm+/-0.4 mm	1.45	

Special sizes are available upon request. Figures of Bulk Density are reference Values.

AISI S-2 TOOL STEEL BALLS

General Information

General Information
S-2 Tool steel balls are design to achieve extreme ruggedness. The ball surface has smooth ground and polished finish. These balls provide the toughness and strength necessary for severe shock loads. S-2 Tool steel balls are hardened throughout and have unusually good wear characteristics. S-2 Tool Steel Balls find most frequent use in oil field equipment and offshore drillting operations. They provide goo service in withstanding the abrasion of pulverized rock and mud slurries.

International Equivalents ASTM A681, UNS T-4190

Chemical Composition

C	0.47-0.52%
Si	0.90-1.10%
Mn	0.40-0.50%
P	0.025% Max
S	0.25% Max
Cu	0.20% Max
Cr	0.045% Max
Mo	0.035% Max
Ni	0.50% Max
V	0.025% Max

Hardness

HRc 55-58

BEARING STEEL ROLLERS

Types of Rollers

Cylindrical Rollers

Taper Rollers

Needle Rollers

Applications

- · Bearings for construction and heavy duty machinery
- · Hinge in technical applications
- · Wind energy
- · Linear slide guidance
- · Shafts, arbour or axles

Ball Valve Component

We manufacture following components for Ball Valves Following are:

Valve Balls

TYPES WE OFFER :- 2 Way, L Port, T Port, FB, RB etc

SIZES WE OFFER: 3/8" to 4" &As per Customer

Requirement

MATERIAL: Any material

Ball Valve Seat Rings

TYPES WE OFFER:-

As per customer requirements

SIZES WE OFFER:

3/8" to 4" & As per Customer Requirement

Ball Valve Stem Pin

TYPES WE OFFER :- 1PC, 2PC, 3PC, Screwed End,

Forged Steel, Extended, Flush Bottom,

Trunion, Antistatic etc.

SIZES WE OFFER: 3/8" to 12"

MATERIAL: 304, 316, Hastelloy, Monel, Inconel, Duplex.

Fasteners

Fasteners are several parts of any machine whether it is big or small. These parts are joined in different ways according to their role and position in a machine.

Temporary Fastening

When parts of a machine are joined in such a way that these can be disjointed or joined again easily, it is called temporary fastening. There is no harm to the machine or its parts in temporary fastening.

In temporary fastening Nuts, Bolts, Screws, Lock Pin, and Washer are used. These things are called fasteners.

We are making Fastening in below mentioned Material

- 1. SS 316L
- 2. SS 304
- 3. Monel
- 4. Inconel
- 5. Hastelloy

Nuts

Bolts

Washers

Springs

We make All types of spring with material specialty like

- 1. Inconel 750
- 2. Spring Steel G2, G3
- 3. Monel

Torsion springs

Compression Springs

Spiral Springs

Disk Springs

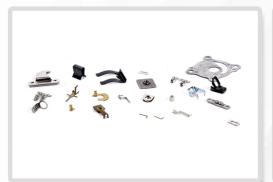
Measuring Instruments

Machine Component

Components As Per Design And Specification

It is a type of contract manufacturing that refers to the process of building products to client work instructions. This is commonly used to manufacture components or pieces of equipment. In this process, a client will provide a product drawing that has been created by an engineer and contain exact specifications down to the millimetre or inch. The design will also outline the necessary materials needed to create the product, and then the product is created.

Machine Components As Per Customer Specification

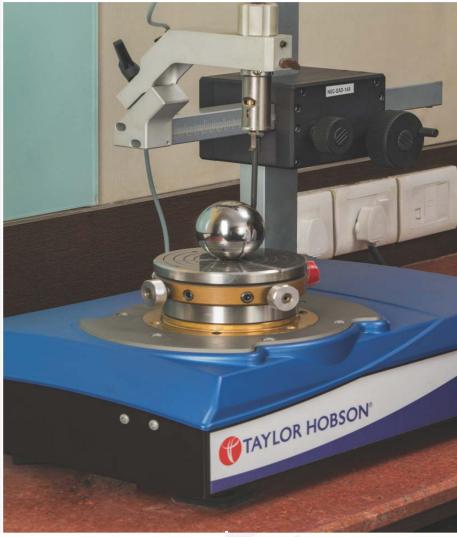

Design and spec refer to the process of building products from scratch, according to a client's need, function, or size requirements. Design and spec can help clients develop solutions for the problems they have. After discussing the desire and coming up with a solution, the manufacturer will assist in designing and creating a product. In the design and spec process, we will assist clients see a project through from beginning to end.

Benefits

The main benefits of specification as per customer specification are accuracy and efficiency.

The Right Choice

The main benefits of specification as per customer specification are accuracy and efficiency.



Lab & list of Instruments

The Company is ISO 9001:2008 certified and our QC Dept is quipped with high tech control machines to meet a broad spectrum of needs and guarantee best quality at all times. We follow Intensive Quality Analysis and provide certificates for each batch inspected.

WAREHOUSE

The specific strength and power of our Group is as a one point contact to respond to all your needs and demands. Quipped with all essential infrastructures, our warehouses are constantly filled with more than 1,000 Tons of inventory in the widest range of sizes, materials and grades, completely available in one source of supply to satisfy the requirements of our worldwide customers in the shortest terms. In addition to special and open orders, we have over 250 standard balls of different types and sizes in stock.

N. GANDHI & CO.

An ISO 9001:2015 Certified Company

Corporate Office:

102, E-Square, Subhash Road, Vile Parle (East), Mumbai - 400057. INDIA

Tel: +91 22 6838 0200 (100 Lines) Email: marketing@ngandhi.com Website: www.ngandhi.com